
UCRL-CONF-209786

PyHelp - An automatic
multi-output documentation
generator for Python

W. I. Nissen

February 17, 2005

NUCLEAR EXPLOSIVES CODE DEVELOPERS
CONFERENCE 2004
LIVERMORE, CA, United States
October 4, 2004 through October 7, 2004

Disclaimer

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

UNCLASSIFIED
Proceedings from the NECDC 2004 UCRL/LS-

UR/SAND

Nissen, W. I.

UNCLASSIFIED
1

PyHelp - An automatic multi-output documentation generator
for Python (U)

W. I. Nissen

Lawrence Livermore National Laboratory, Livermore, California, 94551

The DRACO code creates geometry and meshes through a command-line
Python interface consisting of hundreds of classes and modules which
must be accompanied by current documentation. The standard Python
utility pydoc performs introspection on objects and prints their associated
documentation strings verbatim. However, pydoc supports only very
rudimentary formatting and cannot produce printable documentation. We
decided to modify pydoc to process formatted "docstrings" and use the
Doxygen tool to generate the needed forms of documentation. (U)

Introduction
Codes with complex interfaces often require substantial effort to keep user documentation

current with interface changes. The DRACO code creates geometry and meshes through a
command-line Python interface consisting of hundreds of classes and thousands of functions. A
previous attempt to write documentation manually quickly fell out of date, so the development
team needed to find an alternative. The existing tools did not provide the flexibility we needed,
and the team was already conversant in Doxygen, a C++ code-documenting utility with a simple
tag-based markup. Python comes with a utility, pydoc, that performs introspection on objects
and prints their docstrings verbatim. However, pydoc supports only very rudimentary formatting
and cannot produce printable documentation. Thus we decided to create "docstrings" written in
Doxygen syntax for each object and process them with a modified pydoc to generate the
needed forms of documentation.

Behavior
The primary requirement for PyHelp was making documentation easy to write. Rather than

explain the detailed syntax, an annotated example of a documented function (Fig. 1) serves to
demonstrate most of the features. In general, all markup is done with "tags" that start with a
backslash '\' and may or may not be followed by arguments.

UNCLASSIFIED
Proceedings from the NECDC 2004 UCRL/LS-

UR/SAND

Nissen, W. I.

UNCLASSIFIED
2

def composite(self, edgeList=None, _showWarning = True) :
The definition of the function, part of the regular source code. The name and arguments are

taken from here.
 """Create a composite edge.
A one-line description, to be displayed when asking for brief help.
 \call instance.composite()
 \call instance.composite(edgeList)
Legal calling sequences for the function.

 \param edgeList edge or list of edges
The arguments of the function, one per \param.

 \return None
The return value of the function.

 \description
 Creates a composite edge by joining two or more consecutive edges.
 Edges must be part of a sheet, solid, or wire body, and must be
 given in the order they are connected end-to-end. Vertices joining
 the edges must have exactly two edges. See also \ref
 Face.Face.composite.
The description of the function. Note the use of a link to another object.

 \example
 wire=Wire.FromPoints([(0,0,0),(1,0,0),(2,0,0),(3,0,0)])
 e0=Entity.Edge(0)
 e1=Entity.Edge(1)
 e0.composite(e1)
 \endexample
An example demonstrating the use of the function.

 Auto-compositing is especially useful when a CAD part with
 many edges has been used to create the geometry, because it
 only requires that you specify one edge.
 """
 pass
The function itself would be defined here, but is omitted.

Fig. 1. Sample source code, with annotations

UNCLASSIFIED
Proceedings from the NECDC 2004 UCRL/LS-

UR/SAND

Nissen, W. I.

UNCLASSIFIED
3

The above source code produces the following output, in brief and extended form. The
command help generates brief, two line help, while man generates the full documentation. In
both cases the output is piped to a pager, allowing for scrolling, searching, and other operations.
Note that the \ref used above does not appear in the output. In general, when the text
processor encounters a Doxygen tag it does not understand, it removes it from the output.

Draco>>> help(Edge.Edge.composite)
DRACO Documentation for: method composite in module Edge

composite(edgeList=None, _showWarning=1) unbound Edge.Edge method
 Create a composite edge.
Draco>>> man(Edge.Edge.composite)
Help on method composite in module Edge:

composite(edgeList=None, _showWarning=1) unbound Edge.Edge method
 Create a composite edge.

 Syntax:
 instance.composite()
 instance.composite(edgeList)

 Argument(s):
 edgeList - edge or list of edges

 Returns:
 None

 Description:
 Creates a composite edge by joining two or more consecutive edges.
 Edges must be part of a sheet, solid, or wire body, and must be
 given in the order they are connected end-to-end. Vertices joining
 the edges must have exactly two edges. See also
 Face.Face.composite.

 Example:

 wire=Wire.FromPoints([(0,0,0),(1,0,0),(2,0,0),(3,0,0)])
 e0=Entity.Edge(0)
 e1=Entity.Edge(1)
 e0.composite(e1)

 Auto-compositing is especially useful when a CAD part with
 many edges has been used to create the geometry, because it
 only requires that you specify one edge.

Fig. 2. Text output for a function

UNCLASSIFIED
Proceedings from the NECDC 2004 UCRL/LS-

UR/SAND

Nissen, W. I.

UNCLASSIFIED
4

When passed off to Doxygen, the same function's output in HTML form is mostly the same,
but contains slightly more advanced formatting, and the hyperlinks that was missing from the text
documentation.

Fig. 3. HTML output for a function.

UNCLASSIFIED
Proceedings from the NECDC 2004 UCRL/LS-

UR/SAND

Nissen, W. I.

UNCLASSIFIED
5

The brief output for a package, module, or class is a little different, listing the two-line
descriptions for all the functions contained therein. Though not shown here, all inherited
functions and properties are listed, grouped by the class in which they are implemented.

Fig 4. Brief text output for a class

Draco>>> help(Edge.Edge)
DRACO Documentation for: class Edge in module Edge

class Edge(Entity.Entity)
 Reference to an Edge.

 Data Member(s):

 bodies - list of Body(s)

 cells - list of Cell(s)

 [snip]

 vertices - list of Vertex(s)

 Methods defined here:

 Edge(pentity)
 Constructor should not be called directly.

 composite(edgeList=None, verbose=0, _showWarning=1)
 Create a composite edge.

 getArcLength(u1, u2)
 Return arc length of edge between two parameter positions.
[etc.]

UNCLASSIFIED
Proceedings from the NECDC 2004 UCRL/LS-

UR/SAND

Nissen, W. I.

UNCLASSIFIED
6

The corresponding HTML output is similar, with the addition of automatically generated
hyperlinks from the list of functions to the full documentation for those functions. Doxygen also
automatically produces PostScript and PDF output, with the same features.

Fig. 5. HTML output for a class

Another important requirement was that it automatically produce documentation mirroring
the structure of DRACO. Like many Python programs, DRACO makes use of import
statements and other techniques that cause it to look differently than might be expected based
on a simple parse of the source files. For example, the class Display_ is a singleton instantiated
as Display. Having it shown under its original class name would have been confusing. Therefore
PyHelp always uses the name an object has from the user's perspective, regardless of what its
original name or location is. The drawback is that in order to determine the name, the object

UNCLASSIFIED
Proceedings from the NECDC 2004 UCRL/LS-

UR/SAND

Nissen, W. I.

UNCLASSIFIED
7

must be accessible at startup from the command prompt. Objects that are only created as the
result of user function calls do not get documented. In general, we work around this requirement
by explicitly importing all objects we want to document either at the top level, or as static
members of the class or module that produces them. For instance, a Cell3D can be queried for
its mesh, an instance of Cell3DMesh. No instance or definition of Cell3DMesh is available
without calling a function on Cell3D. So, we import Cell3DMesh to the top level, where it is
documented. All the top-level objects are shown in the HTML index below.

Fig 6. HTML index

UNCLASSIFIED
Proceedings from the NECDC 2004 UCRL/LS-

UR/SAND

Nissen, W. I.

UNCLASSIFIED
8

Research and Development
The primary requirements for the DRACO

documentation system were ease of writing and
updating documentation, ease of navigation for the
user, and the ability to generate online and printed
documentation. Ideally, we would have used one of
the many open-source documentation tools.
Doxygen itself would have been an excellent choice,
but it supports only C/C++. Pydoc produces online
and HTML documentation, but doesn't support
hyperlinking between functions, any type of
formatting, and is profoundly ugly (see Fig. 7)

No existing tool offered the combination of
abilities we were looking for. However, pydoc
came the closest, since it performed sophisticated
introspection of Python data structures and could
produce online documentation. As an open source
application, the Python source code for pydoc was
available to modify.

Design
Pydoc consists of a base class, Doc, and two output-specific subclasses HTMLDoc and

TextDoc, for HTML and command-line output, respectively. I added a class for Doxygen
output, DoxyDoc. (See Fig. 8) Doc is responsible primarily for introspection; that is, traversing
the hierarchical data structures to locate objects and extract their documentation. Python's
hierarchy starts with packages, which contain modules, which contain classes, which contain

functions. What
is done with the
docstring of any
given object in
the hierarchy is
up to the three
output classes.

Implementatio
n and

Maintenance
Adapting pydoc was straightforward. To produce the user-oriented naming scheme for

objects required adding a couple of arguments to each of the recursive function calls, as well as
determining the object name at each level. Perhaps the most difficult task was correctly parsing

Fig. 7. Screenshot of pydoc's HTML output

Fig. 8. PyHelp class structure.

Doc

DoxyDoc TextDoc HTMLDoc

UNCLASSIFIED
Proceedings from the NECDC 2004 UCRL/LS-

UR/SAND

Nissen, W. I.

UNCLASSIFIED
9

the Doxygen tags. Because the tag syntax is so simple, I used regular expressions in Python. In
retrospect, it might have been simpler to write a formal grammar and use a real lexer and parser,
as handling all the cases that came up resulted in expressions such as

 (?:%s(?:[\t]+|[\t]*\n[\t]*\n|\n))((?:.|\n)+?)(?:\n??[\s]*%s).

There are also many cases to handle since a function can reside in a module, class, or at the
top level, and might be treated differently, but again there are not so many that it is impossible.
One goal that I had originally was to employ a stylesheet-like mechanism to use the same logic
for both text and Doxygen output. This would in theory eliminate half the output-specific code
and facilitate consistency between the kinds of output. However, the complexity of doing all the
string manipulation with a stylesheet did not seem worth the benefit.

 The overall complexity is not that high, and the only ongoing maintenance is keeping up with
new versions of Python that have introduced new-style classes and property objects. The
behavior of the inspect module, which does much of the heavy-duty lifting for introspection,
changes and typically breaks PyHelp across major releases.

Testing - an unexpected benefit
Having a defined marking for examples also allowed us to perform basic unit testing with no

additional work. Benjamin Grover, also of the PMESH team, wrote a script to extract all the
source code contained in the example tags, and then execute the code. If the example causes an
exception to be raised, the failure is noted in the test log. Executing the example code then
provides a benefit to the documentation, because it ensures that all the examples are executable.
This was a problem before when developers would change an interface but not update the
description or example, causing the example to be out of date. Executing all example code is not
foolproof, since it does not confirm the correct behavior, but it is useful.

Conclusion
Modifying pydoc to accept Doxygen syntax was a success. PyHelp now provides the

DRACO project with high quality, easy to update documentation, as well as limited unit testing.
It produces online, HTML, and PDF reference manuals that automatically reflect the structure
of DRACO's Python modules and classes from the user's perspective. The end result is a
reference manual that is nearly 1500 pages and would have been almost impossible to keep
current if produced manually.

Acknowledgements
John P. Clark of Northern Arizona University developed the first HTML index for PyHelp.

	Text1: This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

